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Zwick RK, Ohlstein B, Klein OD. Intestinal renewal across the animal
kingdom: comparing stem cell activity in mouse and Drosophila. Am J Physiol
Gastrointest Liver Physiol 316: G313–G322, 2019. First published December 13,
2018; doi:10.1152/ajpgi.00353.2018.—The gastrointestinal (GI) tract renews fre-
quently to sustain nutrient digestion and absorption in the face of consistent tissue
stress. In many species, proliferative intestinal stem cells (ISCs) are responsible for
the repair of the damage arising from chemical and mechanical aspects of food
breakdown and exposure to pathogens. As the cellular source of all mature cell
types of the intestinal epithelium throughout adulthood, ISCs hold tremendous
therapeutic potential for understanding and treating GI disease in humans. This
review focuses on recent advances in our understanding of ISC identity, behavior,
and regulation during homeostasis and injury-induced repair, as revealed by two
major animal models used to study regeneration of the small intestine: Drosophila
melanogaster and Mus musculus. We emphasize recent findings from Drosophila
that are likely to translate to the mammalian GI system, as well as challenging
topics in mouse ISC biology that may be ideally suited for investigation in flies. For
context, we begin by reviewing major physiological similarities and distinctions
between the Drosophila midgut and mouse small intestine.
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INTESTINAL PHYSIOLOGY IN DROSOPHILA AND MAMMALS

An epithelial monolayer that serves as the primary site of food
digestion runs through the Drosophila foregut, midgut, and hind-
gut, as well as the similar regions in the mammalian gut: the
esophagus, small intestine, and large intestine (6, 38, 55) (Fig. 1).
The mammalian small intestine, in turn, is divided into three
regions from proximal to distal: the duodenum, jejunum, and
ileum (Fig. 1). These three regions within the small intestine
display gradual changes in structure and cell-type composition
and a limited number of anatomical differences, such as the
confinement of mucus-secreting Brunner’s glands to the duode-
num (18, 83). By contrast, evaluation of the Drosophila midgut at
a high spatial resolution recently revealed 10–14 subdivisions
with precise boundaries and structural and functional distinctions,
including major differences in cellular morphology and physiol-
ogy, gene expression, susceptibility to tumor formation, and
intestinal stem cell (ISC) behavior (22, 63). It is possible that the

Drosophila midgut contains more distinct compartmentalization
than the similar region in mice; however, these findings also raise
the intriguing possibility that the mammalian small intestine may
exhibit more finely grained spatial differences than has currently
been appreciated.

Unlike the straight epithelial monolayer in flies, the intestine
in mice (and humans) folds into depressions and protrusions,
called crypts and villi (18) (Fig. 1). Despite this prominent
structural difference, the intestine of both species houses epi-
thelial cells of the same basic lineages: absorptive enterocytes
(ECs) and secretory enteroendocrine (ee) cells that execute the
major functions of the gut. Within these lineages, mammals
also possess several specialized cell types not found in Dro-
sophila: antimicrobial-secreting Paneth cells, mucus-secreting
goblet cells, and mechanosensing tuft cells (45) (Figs. 1 and 2).

ISC populations have been defined in both mice and flies.
Drosophila midgut ISCs were identified via clonal analysis and
evaluation of various cell markers (67, 75) and are positioned
on top of the basement membrane along the length of the
intestinal epithelium, next to specialized epithelial cell types
(Fig. 1). In mice, ISCs were first reported in 1974 (26) and
formally defined more than three decades later as fast-cycling
leucine-rich repeat-containing G-protein-coupled receptor 5
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(LGR5)-expressing cells (8) with the ability to generate or-
ganoids in vitro (85). These cells are interspersed between
Paneth cells in the lower-most region of intestinal crypts (Fig.
1), leading to their commonly used name “crypt base colum-
nar” (CBC) cells. The alternating pattern of Paneth cells and
CBCs in mammalian crypts results from a cell division-cou-
pled rearrangement (25, 65) in which Paneth cells wedge
between dividing CBC daughter cells during cytokinesis (65).

In contrast, the factors that dictate the spacing of ISCs within
subsections of the Drosophila midgut are not well understood.

LINEAGE HIERARCHIES WITHIN THE INTESTINAL
EPITHELIUM

Our current concept of the epithelial lineage hierarchy in the
intestine of mice and flies is summarized in Fig. 2. In mice, the

Fig. 2. Intestinal epithelial lineage hierarchies.
In mice (left), crypt base columnar intestinal
stem cells (ISCs) give rise to transit amplifying
(TA) cells that serve as progenitors to mature
cells of the secretory lineage [Paneth cells,
goblet cells, tuft cells, and enteroendocrine
(ee) cell subtypes] or the absorptive lineage
[enterocytes (ECs)]. In Drosophila (right),
ISCs give rise to either secretory ee cells or
enteroblast progenitors that differentiate into
ECs. Green boxes (top, left and right) contain
commonly used ISC markers in each species.
*Expression in actively cycling states.

Fig. 1. Anatomy and physiology of the gastrointestinal (GI) tract in mice and Drosophila. Schematic model of the GI tract in mice (left), including the esophagus;
stomach; duodenum, jejunum, and ileum within the small intestine; cecum; and large intestine, and in Drosophila (right), including the foregut; crop; subsections
of the midgut, including the copper cell region (CCR); and hindgut. Insets: intestinal structure and cellular composition of the small intestine/midgut in each
species, containing intestinal stem cells (ISCs) and epithelial cells of the absorptive and secretory lineages as labeled. EB, enteroblast; EC, enterocyte; ee,
enteroendocrine; TA, transit amplifying.
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traditional paradigm for ISC differentiation under homeostatic
conditions (29) involves ISC progeny first committing to either
the secretory or absorptive lineages (Fig. 2). These progenitors
occupy a region within the crypt, termed the transit amplifying
(TA) compartment, and undergo four to five divisions before
shuffling from the crypt toward the villi to differentiate into
mature cells of their respective lineages. In Drosophila, ISCs
were previously proposed to generate a bipotent enteroblast
(EB) progenitor in response to cell loss. EBs were then thought
to commit rapidly to either an EC or ee cell fate in response to
high or low Delta (Dl)-driven Notch signaling levels, respec-
tively (74). More recent studies, however, showed that EBs are
committed to differentiate into absorptive lineages, whereas
secretory lineages do not transition through an EB intermediate
(11, 17, 39, 108, 109). For differentiation in the absorptive
lineage, ISCs produce membrane-bound Dl that activates the
Notch receptor in newly produced EBs, promoting their dif-
ferentiation into ECs (39). In a significant break from the
former concept of homeostatic regulation of the secretory
lineage, ee differentiation was found to be Notch independent,
instead requiring asymmetric localization of the ee cell fate
marker Prospero during ISC division (39) under control of
transcription factors Escargot (Esg) and Scute (58). Further-
more, ee cells in Drosophila are produced via a mitotic pro-
genitor cell (39), analogous to secretory TA cells in mammals
(Fig. 2).

Several signaling pathways play highly conserved roles in
the control and maintenance of the intestinal epithelial hierar-
chy. As in flies, Notch is one of the major niche signals critical
for ISC maintenance and EC differentiation in mice (13, 35,
39, 90a, 99, 100). Egf signaling, which has long been known to
regulate ISC proliferation and quiescence in Drosophila (16,
20, 47, 91), was recently shown also to regulate the quiescence
of mouse-derived primary ISCs in vitro: the blocking of EGF
receptor induces ISC quiescence and an ee cell-biased gene-
expression signature (10). In addition to these examples, Wnt
signaling is crucial to the regulation of ISC maintenance,
proliferation, and differentiation. As previously reviewed (38),
several lines of evidence have suggested that Wnt/Wingless
signaling regulates invertebrate ISC behavior in some contexts,
although this is only partially understood in Drosophila and
has been a source of some debate. Collectively, these studies
demonstrate that several pathways involved in control of ISC
maintenance and differentiation are conserved between flies
and mice, with practical implications for the comparison of
Drosophila and mammalian lineage hierarchies.

A question of major interest in both vertebrates and inver-
tebrates is how the intestinal epithelium maintains the appro-
priate balance of the absorptive and secretory lineages under
homeostasis. A growing body of literature describes mecha-
nisms that couple signaling and behavior of mature epithelial
cells to ISC division and differentiation in the Drosophila
midgut. Interestingly, the Dl ligand from newly formed ee
daughter cells induces low Notch activity in ISCs that limits
their production of ECs (39). Notch signaling is thus bidirec-
tional: Dl expression by ISCs promotes EC differentiation, as
described above, whereas ee cell-derived Dl represses ISC
differentiation into ECs, maintaining ISC identity (39). The
death of differentiated epithelial cells also impacts ISC behav-
ior in Drosophila. EC apoptosis, including that which results
from homeostatic cell loss, promotes compensatory ISC divi-

sion (3, 38, 48, 59, 93). A population of differentiation-delayed
EBs produced by ISCs under homeostatic conditions can also
sense loss of differentiated cells via cell-to-cell contact and
responds by rapidly undergoing terminal differentiation (4),
providing an additional means by which ISCs and their prog-
eny responds to local cellular demand in Drosophila. The
mechanisms that regulate a steady number of absorptive and
secretory cells under homeostasis are not well understood in
mammals; these studies conducted in Drosophila suggest that
differentiated epithelial cell types may represent a major source
of signals controlling this balance.

ISC IDENTITY AND HETEROGENEITY

Markers that identify canonical stem cells are well estab-
lished in the mammalian intestine, but unique stem cell mark-
ers are currently lacking in Drosophila. In mammals, actively
cycling CBCs, which are regulated in large part by Wnt/�-
catenin signaling, are most commonly defined by their selec-
tive expression of the Wnt pathway member Lgr5 in the crypt
(8). Hundreds of additional genes make up the transcriptional
signature of CBCs, such as commonly used markers Olfm4 and
Ascl2 (71) (Fig. 2), but some are also expressed in other
progenitor cell types in the intestinal epithelium (90). In
Drosophila, ISCs and their daughter EBs express esg, which is
turned off as these cells become polyploid and differentiate
into ECs (52, 60), as well as headcase (79) (Fig. 2). ISCs can
also be defined as Esg�, Notch response element (NRE)-
negative, diploid cells that express Dl only while actively
cycling (67). In apparent contradiction to these characteriza-
tions, Esg�/Dl� cells accumulate in aged flies (15, 27) and
injured intestines; however, these cells are strongly NRE pos-
itive and therefore, may be suspended in an EB-to-EC transi-
tion state due to differentiation defects (101a). Polyploid cells
also express esg and Dl in response to tissue stress (61), but
this may represent an early stage of EC reversion into a
progenitor-like state. Whereas expression of genes enriched in
EBs but not ISCs can distinguish the two esg� progenitor cell
types, discovery of a single gene that is selectively expressed
by Drosophila ISCs but not their progeny would be of signif-
icant value to the field.

Whereas it is emerging that a single, distinct ISC population
exists in both mice and Drosophila, recent work also shows
that individual cells that meet the criteria of these populations
may display important functional differences. For example,
superficially similar ISCs in female and male Drosophila
display different proliferation kinetics, with ISCs in female
flies dividing more frequently during normal turnover and in
response to injury (78). Under homeostatic conditions, ISC-
specific knockdown of the sex-determination pathway in fe-
male animals or conversely, feminization of ISCs in males
reverses sex-specific differences in proliferation rates, demon-
strating that sexual-determination genes regulate this aspect of
ISC behavior (41). Enhanced ISC proliferation capacity is
hypothesized to provide female flies with greater adaptability
to metabolic demand during egg production, and in line with
this, masculinized ISCs in females have reduced fecundity
(41). Although many aspects of sex determination differ be-
tween insects and mammals, recent evidence suggests that sex
specification in each species converges on common effector
genes (30, 64, 77). Thus the possibility that mammals also
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display sexual divergence in ISC behavior—perhaps during
reproductive stages when metabolic need and the demand for
host protection are high—would be an interesting area for
future research.

Another major source of heterogeneity among Drosophila
ISCs relates to their spatial position across the intestine. ISCs,
residing in different subregions of the midgut, display distinct
cycling rates and cell-fate decisions. The tracking of single,
fluorescently labeled stem cells established that in certain
subregions, ISCs generate progeny only within their own
starting regions (63), raising the possibility that intrinsically
different ISCs maintain different regions of the midgut. It was
subsequently identified that exposure to bone morphogenetic
protein (BMP) signals during a confined window of metamor-
phosis specializes some ISCs for the “copper cell region”
(CCR) of the midgut (32). After this developmental time
frame, microenvironment-derived BMP signals are no longer
sufficient to induce a CCR-specific identity in ISCs, although
they play important roles in maintaining CCR identity in
previously specialized CCR ISCs (32, 37). Therefore, in at
least one region of midgut and likely others, intrinsic differ-
ences in ISCs are established in early development, whereas
signals from the microenvironment participate in the mainte-
nance of tissue diversity across the adult midgut. In mammals,
region-specific gene-expression profiles are also maintained in
long-term culture of organoids derived from crypts of different
regions of the small intestine in the absence of ongoing
stimulus from the microenvironment, suggesting the presence
of unappreciated intrinsic differences in crypt-derived epithe-
lial cells from different regions (68). Further exploration of this
possibility is needed in mammals, which may be guided by
further investigation into how ISCs specify and maintain ad-
ditional regions of the Drosophila midgut. ISC heterogeneity
may have major clinical implications. If mammalian ISCs
contain distinct regional subsets, as have been identified in
Drosophila, then the pinpointing of these populations would be
instrumental for the use of ISCs in regenerative medicine.
Future studies in Drosophila and/or mice are also needed to
explore whether ISC subsets could have differences in, for
example, their propensity to drive gastrointestinal (GI) disease,
potency to repair injury, or drug/radioresistance.

REGENERATION FOLLOWING INTESTINAL INJURY AND
STRESS

The intestine can be repaired after tissue stress and injury by
a variety of potential mechanisms (13, 45, 49, 102), including
production of new, differentiated cells from CBCs and/or other
putative ISC populations to replace those that were lost (Fig.
3A), reversion of differentiated cells into functional stem cells
(Fig. 3B), and the reprogramming of ISCs into a proliferative
fetal-like state (Fig. 3C).

In flies, various types of insults to the intestinal epithelium,
including cell ablation with genetic models, bacterial infection,
or feeding with tissue-damaging agents, trigger an ISC-driven
repair response of division and differentiation to replace lost
mature cells (2, 19, 21, 44, 49) (Fig. 3A). In mice, the site of
intestinal injury seems to impact the repair response that will
ensue. Two recent studies (72, 110), in which injury was
localized to different points in the crypt-villus axis, illustrate
this point. In one, villus damage, caused by an enteric rotavirus

that specifically infects differentiated cell types, was repaired
when ISCs were activated to divide and migrate up villi to
replace lost cells (110), according to an ISC-driven mechanism
of cellular replacement similar to that which occurs after
numerous Drosophila injuries described above (Fig. 3A). The
ISC response in this case was dependent on epithelial-derived
Wnt signals, although it is unknown whether these signals act
on ISCs directly or in a nonautonomous manner involving a
feedback mechanism with additional cell types in the microen-
vironment. In a second scenario, crypt damage was induced by
parasitic helminth larvae, which penetrate the epithelium and
localize to the duodenal stroma within a multicellular granu-
loma (72). In this case, crypt cells immediately adjacent to
granulomas undergo an IFN-�-mediated reversion to a fetal
gene-expression program. In vivo, Lgr5 expression was shut
off in the base of these crypts, and proliferation and expression
of the IFN target gene Sca-1 were induced. In vitro, these
Sca-1� cells generate fetal-like spheroids and express a fetal-
associated transcriptional program. Interestingly, other forms
of crypt-localized injury in the small intestine, including irra-
diation and ablation of Lgr5� CBCs (72), as well as dextran
sulfate sodium-induced colitis in the large intestine (107),
produce a similar upregulation of Sca1 expression. Thus, fetal
reprogramming represents another general mode of regenera-
tion that follows crypt injury in multiple parts of the GI tract
(Fig. 3C). Whereas it is known that fetal reversion in the small
intestine following helminth infection is at least partially me-
diated by IFN-�-producing immune cells (72), the exact nature
of ISC–immune cell interactions in controlling regeneration is
an important area for future work.

In mice, several populations other than CBCs have been
proposed to display stem cell-like behavior, especially in
response to injury, which has led to the hypothesis that addi-
tional stem cell populations could maintain the intestinal epi-
thelium in a context-specific manner (13). Most notably, a
population positioned four cells above the base of the crypt
(called “�4 cells”) has been proposed to represent a reserve,
radioresistant ISC population activated by tissue injury (13),
hypothesized to replace CBCs lost by radiation or genetic
ablation (56, 66, 92, 97, 105) (Fig. 3A). Although originally
thought to be quiescent and label retaining, the population that
is commonly referred to as �4 cells may actually represent a
heterogenous cell population with different cycling, radioresis-
tant, and regenerative properties (56). Recently, several studies
have demonstrated that putative genetic markers of �4 cells,
such as Bmi1, which is expressed by radioresistant and injury-
inducible cells (104), are more broadly expressed throughout
the intestinal epithelium than had been appreciated. RNA
sequencing revealed that Bmi1� cells express a transcriptomic
signature aligned with ee secretory cells (105). In response to
irradiation (105) or CBC ablation (43), progeny of Bmi1� cells
de-differentiates into CBCs in a process that involves chroma-
tin rearrangement to a conformation that more closely resem-
bles that of ISCs (43). It is possible that other populations may
represent a reserve stem cell population. However, data ad-
vance our understanding of mammalian ISC hierarchies and
stem/progenitor population inter-relatedness and add to a
growing body of literature that reveals specific injury condi-
tions that promote high levels of plasticity in progenitor and
differentiated epithelial cell populations (23, 43, 95, 98, 105)
(Fig. 3B). In Drosophila, evaluation of the regenerative re-
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sponse that occurs during refeeding, after fasting-induced ISC
loss from large regions of the midgut, revealed that symmet-
rical ISC divisions do not replenish the population (61), as
might be expected given the ISC-driven regeneration methods
described above (Fig. 3A). Instead, polyploid ECs, which
normally possess 4–16 genome copies, undergo ploidy reduc-
tion to reconstitute the population of 2n ISCs (61). In this case,
de-differentiation occurs via “amitosis”: cell division in which
genetic material is separated by nuclear invagination without a
mitotic spindle, resulting in a binucleated cell that ultimately
splits into two daughter cells (61).

Collectively, these studies reveal striking similarities in the
cellular mechanisms of regeneration in Drosophila and mam-
mals. Depending on the context of injury, both species dem-
onstrate ISC-driven repair mechanisms (Fig. 3A), as well as
plasticity of lineage-committed cells that allows them to re-
assume roles as functional stem cells (Fig. 3, B and C).
Depolyploidization has been reported in other physiological
scenarios in numerous organisms, including in cultured mouse
embryos and human adrenal glands (53, 62). Whether this
mechanism could also account for de-differentiation in other
regenerating mammalian tissues, including the intestine, is an
exciting avenue for future investigation. Conversely, future
studies to identify which mechanistic aspects of mammalian
de-differentiation are recapitulated during invertebrate intesti-
nal repair, as well as the possibility that Drosophila ISCs could
also undergo reprogramming (Fig. 3C), will drive further
development in the use of flies to model intestinal regeneration.

MICROENVIRONMENTAL CONTROL OF ISCs

ISCs are exposed to a rich milieu of cellular and noncellular
cues from the surrounding microenvironment, including other
epithelial and immune cells, capillaries (or trachea, in Dro-
sophila), muscle, nutrients, mechanical forces, and extracellu-
lar matrix (6, 45, 94). Although many of these sources of
extracellular signals are shared between Drosophila and mice,
the mammalian microenvironment contains a higher number of

epithelial and immune subtypes than flies, as well as mesen-
chymal cells not present in Drosophila.

Debate over the cell type(s) that provide the Wnt and Notch
signals, key to the regulation of ISC behavior in mice, has led
to recent breakthroughs in our concept of the mammalian ISC
niche (81). Paneth cells were an early candidate source of
signals, given their proximity to CBCs and the demonstration
that they produce Wnt, Notch, and EGF ligands integral to ISC
maintenance and proliferation (13, 84). An important role for
Paneth cells in metabolic regulation of ISCs has also been
defined in several scenarios, including ISC response to calorie
restriction (42, 106) and mitochondrial oxidative phosphoryla-
tion (80). Although it is clear that Paneth cells play a key role
in the regulation of many aspects of ISC behavior, the proposal
of this cell type as a true ISC “niche”—a localized environment
that houses stem cells and is required for the imposition of
stemness (70)—resulted from studies showing the requirement
of Paneth cells for intestinal organoid establishment in vitro
and CBC maintenance in vivo (84). Subsequently, however, it
has been recognized that Paneth cells support intestinal or-
ganoids with Wnt signals that are produced redundantly by
other cell types in the ISC microenvironment, and additional
models of Paneth cell loss have not recapitulated the require-
ment of Paneth cells for CBC maintenance in vivo (33, 51).
Whereas global genetic loss of Wntless (Wls), which is re-
quired for Wnt ligand secretion, depletes the ISC population,
this phenotype is not observed after selective deletion of Wls in
Villin-Cre� mature intestinal epithelial cells (97), in line with
prior studies showing the continuity of intestinal homeostasis
following genetic deletion of other Wnt pathway members
from the same mature epithelial cells (34, 50, 82). These
studies point to Wnt contribution from an extra-epithelial
source in vivo.

The mesenchyme surrounding mammalian CBCs has long
been recognized as a source of Wnt ligands, as well as BMP
antagonists (94). Single molecule RNA fluorescence in situ
hybridization was recently used to identify expression of Wnt

Fig. 3. Models of intestinal regeneration in response to injury.
Potential cellular mechanisms of intestinal repair after injury
include the following. A: replacement of progenitor and differen-
tiated intestinal epithelial cells by intestinal stem cells (ISCs). The
contribution of a second population of reserve ISCs, �4 cells, has
also been proposed. B: de-differentiation of progenitor or mature
cell types into a functional ISC population capable of replacing
lost cells, potentially via standard differentiation pathways. C:
reprogramming of ISCs and/or other epithelial cell types into a
fetal-like cell type marked by a Sca-1� transcriptional signature.
Mechanisms and cell types that require further confirmation are
designated with dotted gray arrows or a question mark, re-
spectively. Crypt and villus designations refer to cell posi-
tion within mammalian small intestine. EB, enteroblast; EC,
enterocyte; TA, transit amplifying.
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ligands, such as Wnt2b and Wnt5a, by numerous mesenchymal
cell types in the ISC microenvironment (97). Foxl1-expressing
mesenchymal cells, residing in close proximity to crypts, were
specifically found to express high levels of growth factors that
can induce Wnt signaling (5), as well as other positive and
negative regulators of Wnt, sonic hedgehog, Bmp, and trans-
forming growth factor � signaling (89); the expression of these
ligands is compartmentalized depending on Foxl1� cell posi-
tion relative to the epithelial crypt-villi axis (89). Depletion of
this putative niche cell population using two diphtheria toxin-
mediated cell-ablation approaches resulted in smaller crypts
and villi, loss of ISCs, and depressed Wnt activity (5). Fur-
thermore, although selective deletion of the Wnt functional
maturation gene Porcupine in epithelial cells, does not impair
intestinal function (50, 82), selective loss of Porcupine in
Foxl1� cells leads to reduced Wnt signaling, loss of ISC and
TA cell proliferation, and impaired epithelial renewal, ulti-
mately resulting in massive crypt loss (89). In support of this
finding, deletion of Wls from an overlapping Gli1-expressing
stromal cell population also resulted in modest ISC loss and
crypt collapse (31). Intriguingly, Gli1� cell numbers increase
after colon damage, suggesting the possibility that these cells
could sense tissue damage or interact bidirectionally with
CBCs (31).

Whereas these studies demonstrate that mesenchymal cells
provide niche support for mammalian ISCs, the identity of a
true ISC niche in Drosophila, which lack this same stromal
population, remains unknown. Intriguingly, however, follow-
ing depletion, ISCs rebound to the same cell number as was
present pre-depletion (61), suggesting the presence of a so-far
unknown mechanism to regulate ISC number precisely in
Drosophila. Future work to determine whether this aspect of
stem cell behavior is controlled by signals from the microen-
vironment or intrinsic-sensing mechanisms is of major in-
terest and may reveal novel means by which ISCs in both
species are able to restore normal population sizes after loss
(66, 92, 96, 104).

The plethora of molecules derived from the microenvi-
ronment that regulates ISC behavior in Drosophila and
mammals—several of which overlap— has been detailed in
numerous reviews (9, 13, 46). Recently, several additional
microenvironmental factors have come into focus as impor-
tant regulators of stem cell behavior. For one, the impact of
mechanical forces on epithelial cell dynamics was investigated
in a recent study by He et al. (40), who showed that a fraction
of Dl� cells with ee cell potential expresses Piezo, a cation
channel that senses mechanical forces. Piezo controls cell
proliferation and ee cell numbers through Ca2� signaling under
homeostatic conditions and in response to transient mechanical
stimuli, such as that produced by the swelling of the intestine
after overfeeding (40). Furthermore, research from the labora-
tory of Ip and colleagues (57) identified that the Misshapen
kinase serves as a mechanical sensor that responds to mechan-
ical stimuli, including intestinal distention, after yeast ingestion
in vivo and substrate stiffness in vitro. In response to GI
stretching, the cellular localization and phosphorylation of
Misshapen change, relieving inhibition of ISC-dependent
growth by the Yorkie pathway and ultimately allowing intes-
tinal growth (57). Work with primary mouse organoids also
supports a role for mechanical forces in the control of ISC
behavior, showing that extracellular matrix stiffness regulates

ISC proliferation and differentiation (36). Specifically, soft
laminin-based matrices promote organoid formation/differen-
tiation, whereas stiffer fibrogen-based matrices enhance ISC
expansion via yes-associated protein 1 signaling (36). Infor-
mation gained from further investigation into mechanical con-
trol of ISC behavior will be important for applications in
biomedical engineering and regenerative medicine.

In addition to the mechanical impact of food ingestion on the
intestine, several recent studies have revealed the impact of
nutritional cues on ISC behavior (1, 46, 88). Long-term calorie
restriction in mice is known to both shorten villi and reduce the
number of differentiated ECs and to increase ISC numbers
nonautonomously via inhibition of mammalian target of rapa-
mycin complex 1 in Paneth cells (42, 106). ISC population
expansion in response to long-term calorie restriction in mice
is in apparent contrast to the reduced number of ISC divisions
in Drosophila in response to decreased nutritional intake,
although the change in flies is also sensed nonautonomously
via insulin signaling from EBs (28). More recently, it was
established in mice that short-term fasts also impact ISC
behavior, in this case acting directly on ISCs to augment fatty
acid oxidation via a peroxisome proliferator-activated receptor
�-mediated mechanism, which results in improved ISC func-
tion (69). Interestingly, ISC numbers and activity decline with
age, but a short-term (24-h) fasting regime was shown to boost
the clonogenic potential of ISCs in aged mice in vitro and in
vivo, raising the possibility that fasting can mitigate age-
associated declines in the regenerative potential of the intestine
(69). Similar to fasting, high-fat diets activate a peroxisome
proliferator-activated receptor � program that enhances ISC
number and function in mice (14). The surprisingly similar
response of ISCs to essentially opposite diets may be due to
heightened exposure of ISCs to free fatty acids, which are
increased in the plasma in response to both fasting and high-fat
diet (albeit from different sources). Dietary cholesterol has also
recently been shown to increase ISC numbers in mice (101)
and differentiation into ee cells in flies (73). Collectively, these
findings speak to the complexity of the ISC response to specific
types of lipids and nutrient levels. Research to understand this
response better is of high priority, given that high-fat diets can
increase the risk for several types of human intestinal cancers,
including colon cancer, via mechanisms that are not fully
understood (24).

Stem cell regulation by neighboring organs is another un-
derstudied source of microenvironmental signals recently
shown to regulate ISC behavior in Drosophila. Specifically,
midgut ISCs in direct proximity (�30 �m) to the midgut-
hindgut boundary were found to be less proliferative and
tumor-initiation prone than ISCs that are further removed from
the organ boundary. Midgut ISCs near the boundary also
mounted a more robust repair response to induced cell death in
the midgut-hindgut boundary than more distant ISCs (86),
suggesting that microenvironmental signals from neighboring
organs may play a role in informing aspects of regional ISC
heterogeneity discussed above.

CONCLUSIONS AND OUTLOOK

Research in Drosophila and mice in the past 5 years has
revealed essential information about the regulation of homeo-
static turnover and injury repair by ISCs that can be exploited
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therapeutically for GI conditions specifically and for regener-
ative medicine more broadly. As work to identify specific
markers of ISCs has progressed in each species, important
sources of heterogeneity within the ISC population, including
spatial and sex-specific differences, have been discovered in
Drosophila that warrant further exploration in vertebrates. By
building on prior understanding of ISC-driven repair of the
intestinal epithelium, an increasingly complex picture of injury
response that varies, in part, based on the type and site of
injury, is emerging. In particular, genetic and epigenetic plas-
ticity of numerous epithelial cell types has recently been
uncovered as an immediate response to injury. Future studies
to clarify molecular and cellular pathways by which this
epithelial reversion contributes to intestinal repair are needed.
Further exploration into other emerging and lesser known
aspects of the ISC microenvironment, including those dis-
cussed above, as well as inflammatory signals and immune
regulation (7, 13), mesenteric adipocytes (103, 111), and the
enteric nervous system (76, 87), also holds promise for better
understanding the cues that regulate ISC behavior.
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