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Abstract

Objectives: Morphological integration, or the tendency for covariation, is commonly seen in

complex traits such as the human face. The effects of growth on shape, or allometry, repre-

sent a ubiquitous but poorly understood axis of integration. We address the question of to

what extent age and measures of size converge on a single pattern of allometry for human

facial shape.

Methods: Our study is based on two large cross-sectional cohorts of children, one from Tanzania

and the other from the United States (N57,173). We employ 3D facial imaging and geometric

morphometrics to relate facial shape to age and anthropometric measures.

Results: The two populations differ significantly in facial shape, but the magnitude of this differ-

ence is small relative to the variation within each group. Allometric variation for facial shape is

similar in both populations, representing a small but significant proportion of total variation in facial

shape. Different measures of size are associated with overlapping but statistically distinct aspects

of shape variation. Only half of the size-related variation in facial shape can be explained by the
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first principal component of four size measures and age while the remainder associates distinctly

with individual measures.

Conclusions: Allometric variation in the human face is complex and should not be regarded as a

singular effect. This finding has important implications for how size is treated in studies of human

facial shape and for the developmental basis for allometric variation more generally.
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1 | INTRODUCTION

Most morphological structures are integrated (Olson and Miller, 1958),

meaning that they tend to covary, driven by variation in developmental

processes (Hallgrimsson et al., 2009). This is the case for the face and

craniofacial complex in humans and other vertebrates (Bastir, 2008;

Porto, de Oliveira, Shirai, De Conto, & Marroig, 2009). Variation in the

growth of the chondrocranium (Bastir and Rosas, 2006; Bastir, Rosas,

& O’higgins, 2006; Hallgrimsson et al., 2006; Parsons, Downey, Jirik,

Hallgrimsson, & Jamniczky, 2015) or the brain (Lieberman, Hallgríms-

son, Liu, Parsons, & Jamniczky, 2008; Marcucio, Young, Hu, &

Hallgrimsson, 2011; Parsons et al., 2011) are major developmental

determinants of covariation patterns for craniofacial morphology.

Somatic growth is likely to be another such determinant, because mor-

phology tends to be related to size. For most anatomical structures,

shapes and proportions have a regular relationship to size (Jolicoeur,

1963). Taller people tend to have longer, more prognathic faces

(Baume, Buschang, & Weinstein, 1983; Mitteroecker, Gunz, Windh-

ager, & Schaefer, 2013). The specific relationship between shape and

size is termed “allometry” (Klingenberg, 2016; Klingenberg and Zimmer-

mann, 1992). Many genetic and environmental influences affect growth

as well as other aspects of facial development. To disentangle the cor-

related effects of size from other more specific effects, it is necessary

to understand the role of allometric variation.

Allometry is typically divided into ontogenetic versus static compo-

nents. Ontogenetic allometry is the shape variation that correlates with

age or developmental stage. Static allometry is the shape variation that

correlates with size, controlling for age or stage (German and Meyers,

1989). Allometry is a special case of morphological integration (Mag-

wene and Westneat, 2001), which refers to the tendency for structures

to covary because developmental processes tend to affect multiple

traits (Hallgrimsson et al., 2009). For allometric variation, the process

assumed to produce these correlated effects is growth.

A challenge to the study of allometry is that there are often multi-

ple ways to quantify both growth and size for most anatomical struc-

tures. Ontogenetic allometry is complicated when developmental time

and stage or rate become dissociated. This can occur when mutations

affect developmental rate in addition to other phenotypic effects

(Gonzalez, Kristensen, Morck, Boyd, & Hallgrimsson, 2013; Wang and

Diewert, 1992). Further, the biological meaning of size is often unclear.

An assumption made in many morphometric analyses is that the appro-

priate measure of size is the size of the anatomical structure analyzed,

usually quantified as the centroid size of a landmark configuration (Klin-

genberg and Marugan-Lobon, 2013). But centroid size is a very differ-

ent biological measure when quantifying an entire organism, such as a

trilobite fossil (Webster and Zelditch, 2005), versus a human skull (Mar-

tinez-Abadias et al., 2012) or an individual tooth (Polychronis et al.,

2013). Yet, many studies treat the shape correlates of centroid size in

these different contexts as if they reflect the same kind of biological

variation. For the human face, is the appropriate measure the length,

width, or area of the face, head circumference, or some measure of

body size? To answer this question, we must understand how various

measures of growth and age relate to shape variation for the structure

of interest. If allometric variation reflects the shape consequences of

variation in a single underlying growth parameter, then the shape cor-

relates of different size measures should converge on a single covaria-

tion pattern. If this is not the case, then we cannot assume that

allometric variation quantified based on different measures of size are

capturing homologous biological variation.

Here, we address the relationship between various measures of

size and age to facial shape in two previously described cross-sectional

cohorts of children, one comprised of Bantu speaking groups in north-

west Tanzania (Cole et al., 2016) and the other comprised of Americans

of predominantly European ancestry (Shaffer et al., 2016). We compare

the shape correlates of age, two measures of somatic size (stature and

body mass), and two local measures of head size (face size and head cir-

cumference). These measures are selected to capture disparate growth-

related effects. Age represents ontogenetic effects. Stature reflects lon-

gitudinal growth while body mass captures overall somatic growth.

Face size is related to local growth of the face while head circumfer-

ence is influenced by overall head and brain size. Brain growth is known

to influence craniofacial shape (Aldridge et al., 2005; Hill et al., 2013;

Marcucio, Hallgrimsson, & Young, 2015; Marcucio et al., 2011).

2 | MATERIALS AND METHODS

2.1 | Sample collection

The cohort of 5,961 Tanzanian children of self-identified Bantu origin

(3,342 female, 2,619 male) has been described in detail previously (Cole
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et al., 2016, 2017). Subject ages were 3 to 23 years (mean 10.8 6 2.8

years; females, 10.762.7 years; males, 10.962.8 years). All partici-

pants were examined by a physician (M.M.) to exclude subjects with

any birth defects, history of facial surgery or interventionist orthodontic

treatment, or first-degree relatives with craniofacial abnormalities.

The cohort of 1,212 North American children (609 female, 603

male) has also been described in detail previously (Shaffer et al. 2016).

In this sample, we included only children who self-identified as “white”

using the NIH “racial and ethnic categories” for recruitment and con-

senting of research subjects (https://grants.nih.gov/grants/guide/

notice-files/NOT-OD-15-089.html). European ancestry was confirmed

from genomic data (Shaffer et al., 2016). Ages were 3 to 18 years

(mean 9.0 6 4.1 years; females, 9.2 6 4.2 years; males, 8.9 6 3.9

years). Participants in the North American sample were screened using

exclusion criteria similar to the Tanzanian cohort.

The full set of anthropometric measurements of height, weight, and

head circumference were obtained for a subsample of 4,239 Tanzanian

subjects, taking the average of two sequential measurements. Height

was measured in centimeters using a standard stadiometer; body weight

was measured in kilograms using a digital body weight scale. Head cir-

cumference was measured in centimeters using a standard ribbon meas-

uring tape, with the measuring tape placed approximately two

centimeters above the supraorbital ridge. The same anthropometric

measurements were obtained for roughly half of the North American

subjects from Denver and San Francisco (N5343) while head circumfer-

ence was not obtained for the Pittsburgh subjects (N5506). Only the

sample for which all anthropometric measures were available was

included in the analyses of allometry (N54,582, F52,525, M52,057).

Ethical approval was granted by the Tanzania National Institute for

Medical Research (NIMR/HQ/R.8a/Vol.IX/845), and the University of

Calgary (CHREB 21741), the University of Colorado (09–0731) and the

University of Pittsburgh (No. PRO09060553 and No. RB0405013).

Informed written consent was obtained from the parents and guardians

of all participants, prior to participation in the study.

Neither cohort is assumed to be representative of any biologically

definable racial or ethnic category, nor do we assume that such catego-

ries exist in a biological sense (Edgar and Hunley, 2009; Hunley, Healy,

& Long, 2009). Rather, these cohorts sample two populations in which

within-sample heterogeneity due to ancestry has been minimized to

some degree.

2.2 | 3D imaging and automated 3D landmarking

3D facial surface images were captured and processed as described

previously in Cole et al. (2016) and Shaffer et al. (2016). Analysis of

facial shape and size were based on 29 landmarks that were obtained

using a novel automated landmarking method (Figure 1, Table 1 (Li

et al., 2017). In this method, a set of 17 control points are automatically

detected from learned features of the face surface maps. These points

are then used to register each face to a template, after which the face

is warped to the template using a thin-plate spline based algorithm.

The learning step is used only to improve the automated identification

of the 17 control points which are used to anchor the registration of

each individual image to the template. Once the full dataset is regis-

tered to the template, the program transfers 29 landmarks are then

transferred to each face and their positions calculated from the trans-

formation matrix used to warp each face to the template.

The template was created from a set of 50 images of Tanzanian

children that had been manually landmarked (Li et al., 2017). The sam-

ple size for the template generation, while somewhat arbitrary, is

intended to ensure that the 29 landmarks are placed accurately on the

template and that morphology of the template falls close to the mean

of the sample to be landmarked. Importantly, the template does not

have to be exactly at the mean. It is only when an individual surface is

very different from the template, that automated landmarking results in

a bias towards the landmark positions of the template (Li et al., 2017).

This effect is only detectable for individuals that fall far (>3SD) from

the mean.

We used a single template for the combined dataset. Using sepa-

rate templates for the two populations would create an artifactual dif-

ference between them. Since the landmark positions on the template

determine the point at which the landmarks are transferred from the

template to each individual, any difference in landmark position bet-

ween the two templates would translate into an artifact. The use of a

single template in this case is justifiable because the shape variation of

the two samples overlaps extensively. We corrected for superficial arti-

facts due to smiling, squinting, and open mouth using canonical variates

analysis. This results in a continuous correction for these effects as

described and validated in Cole et al. (2016). Further, we corrected for

small differences between cameras. White light photogrammetry was

performed using two models of Creaform cameras (Megacapturor and

Gemini). These effects and the methods used to validate these correc-

tions are described in supplementary data in Cole et al. (2016).

2.3 | Morphometric analysis

We performed geometric morphometric analyses using R Development

Core Team (2014) and MorphoJ v1.04a (Klingenberg, 2011). Landmarks

were subjected to Procrustes Superimposition to rescale to unit cent-

roid size, translate to standard position, and rotate to standard orienta-

tion (Rohlf, 1999). For all analyses described here, the groups included

FIGURE 1 Anatomical Landmarks. 29 landmarks as placed on the
3D facial photo scans. Corresponds to anatomical descriptions in
Table 1
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in each separate analysis are subjected to the same Procrustes

superimposition.

To estimate the relative proportions of shape variation attributable

to size and growth measures and their interactions within each cohort,

we used a linear model built in R Development Core Team (2014) with

the Geomorph R package, version 3.0.3 (Adams and Otarola-Castillo,

2013). We used Geomorph’s procD.lm function to perform Procrustes

ANOVA with permutation procedures, to assess shape variation and

patterns of co-variation, and we thereby built a statistical model to

quantify the relative amount of facial shape variation attributable to

TABLE 1 Anatomical landmarks

3D landmark name Abbreviations Definitions

Nasion n Midline point in where the frontal and nasal bones contact (nasofrontal suture).
Corresponds to the underlying bony landmark.

Pronasale prn Midline point marking the maximum protrusion of the nasal tip.

Subnasale sn Midline point marking the junction between the inferior border of the nasal
septum and the cutaneous upper lip. It is the apex of the nasolabial angle.

Labiale Superius ls Midline point of the vermilion border of the upper lip, at the base of the philtrum.

Stomion sto Midpoint of the labial fissure.

Labiale Inferius li Midline point of the vermilion border of the lower lip.

Sublabiale sl Midpoint along the inferior margin of the cutaneous lower lip (labiomental sulcus).

Gnathion gn Midline point on the inferior border of the mandible. Corresponds to the
underlying bony landmark.

Endocanthion (Right) en_r Apex of the angle formed at the inner corner of the palpebral fissure where the
upper and lower eyelids meet.

Endocanthion (Left) en_l Same as above

Exocanthion (Right) ex_r Apex of the angle formed at the outer corner of the palpebral fissure where the
upper and lower eyelids meet.

Exocanthion (Left) ex_l Same as above

Alare (Right) al_r Most lateral point on the nasal ala.

Alare (Left) al_l Same as above

Alar Curvature Point (Right) ac_r Most posterolateral point on the alar cartilage, located within the crease formed
by the union of the alar cartilage and the skin of the cheek.

Alar Curvature Point (Left) ac_l Same as above

Subalare (Right) sbal_r Point located at the lower margin of the nasal ala, where the cartilage insterts in
the cutaneous upper lip.

Subalare (Left) sbal_l Same as above

Crista Philtri (Right) cph_r Point marking the lateral crest of the philtrum at the vermilion border of the
upper lip

Crista Philtri (Left) cph_l Same as above

Chelion (Right) ch_r Point marking the lateral extent of the labial fissure.

Chelion (Left) ch_l Same as above

Tragion (Right) t_r Point marking the notch at the superior margin of the tragus, where the cartialge
meets the skin of the face.

Tragion (Left) t_l Same as above

Superior Alar Groove(Right) supa_r Most superior portion of alar groove.

Superior Alar Groove (Left) supa_l Same as above

Zygion (Right) z_r Most prominent portion of zygomatic arch

Zygion (Left) Z_l Same as above

Pogonion P Most prominent portion of chin, anatomical pogonion.

Anatomical descriptions and variable names of 29 landmarks used in the study. As referenced from http://www.facebase.org. Corresponds to Figure 1.
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age, centroid size, height, weight, head circumference, sex, and the

interactions between these variables. Since procD.lm uses Type 1

sums-of-squares, we alternated the position of the last variable in

sequential regressions to accurately estimate percentage variance

attributable to each variable. To visualize the shape effects of age,

centroid size, height, weight, head circumference and sex, regression

scores were computed for the model using the RegScore function from

the R Morpho package, version 2.4.1.1 (Schlager, 2017). Separate Pro-

crustes fits were performed for each population for the within-

population analyses only. All analyses of the combined data involved a

single, combined Procrustes fit.

To describe variation in facial shape independent of size and age in

both populations, we regressed out the main and interaction effects for

the size and age measures on the combined dataset, and re-centered

the resulting residuals on each population mean. We then used princi-

pal components (PCs) analysis to describe this variation. Thin-plate-

spline warps were constructed using Landmark software (Wiley et al.,

2005) for the first five PC axes. The face morphs were based on a tem-

plate that was created from a random sample of 50 individuals varying

in age and sex (Li et al., 2017). This template was then morphed to the

overall sample mean and the resulting face was used to visualize the

variation in the sample. Heat maps to visualize the areas of greatest

shape differences were constructed using the meshdist function in the

Morpho package for R (Schlager, 2017). Separate principal component

analyses (PCAs) were performed for the Tanzanian and North American

samples.

We also tested the effects of random error in the age values in the

Tanzanian data on our estimates of allometric variation in face shape.

To do this, we applied three models to the North American data, for

which exact ages are available. The first uses the exact age, the second

averages to the nearest whole year and the third to the closest 3-year

interval.

Before combining the Tanzanian and North American cohorts for

further analysis, we first determined the variation due to sex and popu-

lation using a multiple analysis of variance model for these factors and

their interactions in the combined sample. This was implemented in the

Geomorph package for R (Adams, Collyer, Otarola-Castillo, & Sherratt,

2014; Collyer, Adams, Otarola-Castillo, & Sherratt, 2015). We then

removed ethnic group and sex from the analysis by centering the resid-

uals from this model on the sample grand mean. We quantified and

visualized the shape variation associated with each size measure and

age using multiple linear regression implemented in Geomorph. Morphs

and heatmaps were created in R using the Morpho package (Schlager,

2017).

Facial shape is likely to relate nonlinearly to measures of age and

size. To determine whether the departures from linearity are suffi-

ciently large to invalidate a linear regression approach, we compared

regressions with up to five polynomial terms for all variables.

In the combined Tanzanian and North American cohorts, we tested

whether measures of size and age were associated with distinct effects

on face shape. We took two approaches to this question. The first

compares the conditional variation for each size/age variable. Here, we

created a dataset in which the shape effects of all size variables and

age including their interactions were removed using multiple linear

regression. We then projected those data on to the regression for each

size/age variable using the coefficients for each variable from their

regression on the original data scaled to value of the independent vari-

able for each individual. This creates separate datasets for the condi-

tional variation for each variable. We then obtained the first PC of the

5 measures of size and age. Using a linear multiple model as imple-

mented in the Geomorph ProcD.allometry function in R, we regressed

the conditional variation datasets on the size/age PC1 and compared

slopes and variance explained for each dataset. This analysis tests the

extent to which each size/age variable is associated with similar magni-

tudes and directions of shape variation in the face.

In the second approach, we performed regressions of the sex and

population corrected data on each variable separately. This approach

uses the original data rather than the conditional variation datasets

used in the first approach. We then obtained the vectors that corre-

spond to these regressions from the regression coefficients and calcu-

lated the angles among them. To compare these vectors, we resampled

the sex and population adjusted data with replacement and obtained

the full set of vectors at each resampling iteration. This was imple-

mented using AngleTest in the Morpho package for R (Schlager, 2017).

This approach thus compared the specific shape variation associated

with each independent variable. Although this method is also based on

regression coefficients, it differs from the first approach in that it per-

mutes the angles among vectors for each landmark and allows for an

intuitive visualization of the angles.

These two analyses essentially converge on an assessment of colli-

nearity or multicollinearity among the measures of age and size. If the

variables are capturing the same latent biological variable, a straightfor-

ward application of a linear model will not disentangle their effects.

Our strategy in these three methods is to quantify and compare the

directions and magnitudes of the main effects associated with each

variable by isolating them using a conditional variation approach. Com-

plete collinearity would result in parallel results across the conditional

variation datasets.

Finally, we asked to what extent the five measures converge on a

single underlying allometry factor. To determine the proportion of vari-

ation in facial shape explained jointly by all five measures, we per-

formed a PCA for age and the four measures of size. We then used the

data corrected for sex and population and estimated the proportion of

variation in facial shape explained by each size/age PC.

3 | RESULTS

3.1 | Facial shape variation related to measures

of size and age

To assess the relative proportion of facial shape variation attributable

to the size/age variables (age, centroid size, height, weight, head cir-

cumference, sex) as well as the interactions among them, we applied a

linear model to the Procrustes coordinate data for each population.

Unbiased estimates of the variance as determined by randomizing the

order of factors are shown in Table 2 for the Tanzanian Cohort. We
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found that age, centroid size, height, weight, head circumference and

sex all had significant effects (p5 .001 for all) on facial shape variation.

Centroid size captured approximately 4.5% (r250.045) of the shape

variation, while weight captured 1.2% (r250.012) and head circumfer-

ence captured approximately 1% (r250.010). Height (r250.003) and

age (r250.001) by this model explained<1% of the total variation.

Figure 2 shows visualization of the related facial shape variation. Similar

patterns were observed in our North American cohort (Figure 3).

Since the Tanzanian ages are self-reported, we determined the

sensitivity of these result to random error in the age data by degrading

the age values in the North American data to one, two and three year

intervals. In the exact-age model, age explained <1% of the total varia-

tion (r250.01), while centroid size explained 3.9% (r250.039). These

TABLE 2 Tanzanian procrustes ANOVA model

Measurement df SS MS r2 p

Weight 1 0.115 0.191 0.0120 .001

Height 1 0.187 0.187 0.0032 .001

Head circumference 1 0.092 0.092 0.0108 .001

Centroid size 1 0.439 0.439 0.0456 .001

Age 1 0.169 0.169 0.0010 .001

Age * Centroid size 1 0.009 0.009 0.0009 .001

Head Circumference * Centroid size 1 0.006 0.006 0.0006 .004

Height * Weight 1 0.015 0.015 0.0014 .001

Height * Age 1 0.005 0.005 0.0005 .008

Head Circumference * Height 1 0.002 0.002 0.0002 NS

Height * Age 1 0.005 0.005 0.0005 .012

Head Circumference * Height * Age 1 0.003 0.003 0.0004 NS

Residuals 4800 9.46 0.00

Total 4813 10.51

Relative proportion of variation attributable to several allometric measures. Corresponds to Figure 3.

FIGURE 2 Thin-plate spline warps of Tanzanian allometric
variation. Thin-plate spline warps showing variation across age,
centroid size, head circumference, height, and weight. Negative
end of the axis of variation is displayed in the left column, while
the positive is displayed on the right. Corresponds to Table 4

FIGURE 3 Thin-plate spline warps of allometric variation in
European-derived North American children. Thin-plate spline warps
showing variation across age, centroid size. Negative end of the
axis of variation is displayed in the left column, while the positive
is displayed on the right
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values did not change significantly when transforming the exact age to

the nearest whole-year (r250.001) or the nearest 3-year interval

(r250.0006). We assume that random error in age will have similar

effects in the Tanzanian data.

3.2 | Facial shape variation unrelated to size/age

Separate PCA of the size and age corrected Procrustes coordinates for

both populations revealed that facial shape variation independent of

size and ages measures is highly structured. In the Tanzanian cohort,

along the PC1 axis (22.7% variance) individuals varied in relative upper

facial height, overall facial width, nasal base width, and interorbital dis-

tance. Similar to PC1, PC2 (21.3% variance) described shape changes in

total facial height and width, while also capturing the relative degree of

maxillary prognathism. PC3 (14.7% variance) captured mandibular prog-

nathism, upper facial depth, and midfacial length. In the North Ameri-

can cohort, along the PC1 axis (22.7%) subjects varied in facial height,

facial width, philtrum height and chin protrusion. PC2 (18.9%) des-

cribed variation in maxillary prognathism, chin protrusion, and nasal

projection. PC3 (16.5%) captured degree of retrognathia, nasal projec-

tion and interorbital distance. PC 1–10 Eigenvalue variances for both

study populations are listed in Table 3. Figure 4 shows visualization of

the shape changes associated with PCs 1–5 for both study populations,

constructed via thin-plate-spline warps and Hausdorff distance color

maps. In conjunction with Figure 4, Table 4 describes these shape

changes. Shape visualization of PC axes 6–10 can be found in Support-

ing Information Figure S1.

3.3 | Variation due to sex and population

To test for the effects associated with sex and population, we used the

original Procrustes coordinate data (not the age and size corrected

data) in which the two populations has been subjected to a single Pro-

crustes superimposition. Multiple analyses of variance on the revealed

significant effects for both sex and population. Both factors interact

significantly with age (Table 5). Figure 5 shows 3D morphs and

heatmaps corresponding to the sex and population differences in the

sample. All effects and interactions are significant (Table 5). However,

the magnitudes of these effects are fairly small compared with variation

within each population. The difference between the two populations

explains <4% of the total variation in the combined sample. The exten-

sively overlapping variation in facial shape is evident in scatterplots of

the first four PCs (Figure 5b). Here, the ranges of variation overlap

almost entirely with the most separation evident on PC4 which

explains 6% of the combined sample variance.

The interaction effects between population and age or population

and the size measures, while statistically significant, explain very little

variance compared with the main effects (Table 5). The variances

explained by the interaction terms are an order of magnitude lower

than the main effects. This shows that both the allometric trajectories

and sexual dimorphism, while detectable in this large sample, are

actually very similar in the two populations.

The interaction effect for age and sex is significant but also quite

small. The regression score plot (Figure 5d) shows a reversal in this

effect, likely reflecting somewhat altered ontogenetic trajectories bet-

ween the sexes after puberty. The magnitude of this interaction effect;

however, is small compared with the overall relationship between age

and face shape.

3.4 | Comparisons of the allometric trajectories

associated with different measures of size and age

in the combined sample

From the combined original Procrustes data, we first removed the

effects of population, sex and the interaction between the two using

Procrustes ANOVA and centered the resulting residuals on the average

of the sex and population averages. Figure 6 shows 3D morphs and

heatmaps that correspond to the regressions of each variable sepa-

rately for the combined sample after removing the effects of sex and

population. These morphs show that the shape effects associated with

all factors except head circumference are fairly similar, with higher

TABLE 3 Eigenvalues and Variances for PC 1–10 for facial shape after removing variation related to age and size

Tanzanian European-derived North American

PC Eigenvalues % variance Cumulative variance Pc Eigenvalues % variance Cumulative variance

1 0.00046 22.67 22.67 1 0.00051 22.74 22.74

2 0.00043 21.34 44.01 2 0.00041 18.89 40.83

3 0.00030 14.72 58.72 3 0.00037 16.51 57.34

4 0.00015 7.28 66.01 4 0.00018 8.09 65.43

5 0.00013 6.28 72.29 5 0.00012 5.52 70.95

6 0.00009 4.15 76.44 6 0.00009 3.91 74.86

7 0.00006 3.12 79.56 7 0.00008 3.57 78.43

8 0.00006 2.93 82.49 8 0.00007 3.21 81.63

9 0.00004 2.07 84.56 9 0.00004 1.92 83.55

10 0.00003 1.38 85.94 10 0.00004 1.81 85.36
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values associating with narrower, taller and more prognathic faces

while lower values are associated with rounder and less prognathic

faces.

There are significant but very small interaction effects for some

size/age measures with population as determined by Procrustes MAN-

OVA using procD.lm in Geomorph (Collyer et al., 2015). All explain

<1% of the facial shape variance in the combined sample. The largest

of these are between population and height (r250.0011, p< .001) and

population and weight (r250.0007, p5 .003). Although these results

suggest slightly different allometric trajectories for these variables

between the two populations, the magnitudes of these effects are very

small.

To determine the influence of nonlinearity in the relationships of

facial shape to the measures of size and age, we performed comparison

FIGURE 4 Thin-plate spline warps for PC 1–5 of Tanzanian and European-derived North American sample. Negative and positive PC
scores represented. Color maps represent areas of greatest difference (red) and least difference (blue). Figure corresponds to Table 3

TABLE 4 Anatomical shape changes

Tanzanian Caucasian

PC Shape change across PC axis PC Shape change across PC axis

PC1 Facial height, facial width, interorbital distance PC1 Facial height, facial width, philtrum height, chin protrusion

PC2 Facial height, maxillary prognathism, facial width PC2 Maxillary prognathism, chin protrusion, nasal projection

PC3 Facial width, upper facial depth PC3 Retrognathia, nasal projection, interorbital distance

PC4 Facial height, maxillary prognathism, chin protrusion PC4 Nasal width, philtrum length, maxillary retrognathism

PC5 Facial height, nasal tip projection, width of mouth PC5 Nasal tip projection, nasal width, philtrum length, and width

PC6 Nasal cavity width, maxillary prognathism PC6 Facial width, facial height, zygomatic projection

PC7 Width of mouth, facial prognathism PC7 Nasal width, width of mouth, zygomatic projection

PC8 Zygomatic projection PC8 Facial width, zygomatic projection, interorbital distance

PC9 Maxillary prognathism, upper facial height, nostril width PC9 Width of mouth, nasal width, retrognathia

PC10 Length of chin, nasion positioning PC10 Maxillary retrusion, philtrum width, nasal width

Shape changes across PC axes. Descriptions correspond to Figure 4 for facial shape after removing variation related to age and size.
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of regressions with up to five polynomial terms. This revealed only

small increases in the variance explained with the addition of polyno-

mial terms. This suggests that while all variables potentially have non-

linear relationships to face shape, the vast majority of associated

variance is captured using linear regression. More importantly, the rela-

tive magnitudes of the variances explained by the size variables and

age are not altered by polynomial regression. As performing nonlinear

regressions would substantially complicate the analysis and this would

also risk overfitting the data, we performed all subsequent analyses

based on linear models. Supporting Information Figure S2 shows the

change in variance explained by polynomial regressions for all variables.

We used two distinct methods to compare the shape effects of

the five measures of size and age. In the first, we created a dataset in

which the effects of all five factors and their interactions were

removed. Then we projected these data on to the regressions for each

factor individually and compared the resultant datasets. Figure 7a

shows the regressions of these projected data onto the first PC of the

five measures of size and age. These plots show common allometric

component scores plotted against the common size-age axis. common

allometric component scores (Mitteroecker, Gunz, Bernhard, Schaefer,

& Bookstein, 2004) based on each conditional variation dataset plotted

against the common size-age axis. This axis is estimated as PC1 of the

TABLE 5 Procrustes ANOVA with permutation for population, sex and age

Factor Df SS MS r2 F Z Pr(>F)

Population 1 0.41 0.41 0.037 183.99 30.94 0.001

Sex 1 0.08 0.08 0.007 36.07 21.82 0.001

Population * Sex 1 0.01 0.01 0.001 3.56 3.06 0.003

Population * Age 2 0.38 0.19 0.035 86.23 29.28 0.001

Sex * Age 1 0.01 0.01 0.001 5.25 4.69 0.001

Residuals 4,575 10.11 0.00

Total 4,581 11.00

FIGURE 5 Facial shape effects by population and sex. (a) shows the mean face shapes for the Tanzanian and North American samples and
the differences between those means as a heatmap. (c) shows exaggerated morphs for Males and Females. These were calculated as 2.53
the Procrustes distance between the sexes after standardizing for age. (d) shows the regression of face shape on age by sex
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size variables and age. The slopes of these regressions are significantly

different as determined by homogeneity of slopes test (F535, p< .01).

Further, the shape variation produced by projecting each variable on to

the allometry free data is also significantly different (MANOVA,

p< .001). Figure 7b shows the correlation matrix for the size measures

of age, from which the common measure of size was obtained. Figure

7c shows the resampled variances explained (r2) that correspond to the

regressions of each conditional dataset on the common measure of

size. These values estimate the proportion of size-related or allometric

variation that corresponds to a standardized amount of variation (13

variance) in each independent variable. As in the variance component

estimates above, there results show that centroid size is associated

with the most allometric variation, head circumference the least, while

weight, height and age fall in between. The resampled distributions in

Figure 7c show that centroid size is associated with significantly more

variation and head circumference with significantly less variation than

the other three variables.

In the second method, we compared the directions of size-related

shape variation, by resampling the regression coefficients obtained

from separate regressions of the sex and population adjusted data on

each variable. Figure 8a shows the 3D vectors that correspond to these

regressions, scaled to 33 variance for each variable. Figure 8b shows

the results of a resampling test to compare these vectors. These results

show that all of the vectors are significantly different from one another

(p< .001) for all comparisons except for age and height (p5 .103).

However, all of the vectors are also significantly more similar than

expected by chance (p< .001). Age and height are associated with

the most similar shape changes, followed by centroid size and age.

These results show that the shape changes associated with age and the

various measures of size are closer to being parallel than random.

However, most of the comparisons among these measures show

shape transformations that differ significantly in both direction and

magnitude.

Finally, we estimated the face shape variation related to the covari-

ance of age and the four measures of size and compared this to the

total face shape variation explained by all factors and their covariation

in order to assess the extent to which the size/age measures converge

on a single “allometry” factor. After adjusting the data for population

and sex, size/age PC1 explains, 3.5% of the variation in facial shape.

Adding PC2 brings this to 5%. All size/age PCs together explain 6.1%

while a linear model for all size factors and their interactions explains

7.1% of the variation in facial shape. Thus, half of “allometric” variation

is shared among size and age measures and half is distinctly associated

with individual measures or subsets of measures.

4 | DISCUSSION

Allometric variation results from the correlated effects of variation in

size and is special because variation in size is so ubiquitous and func-

tionally important. Here, we have analyzed the facial shape correlates

FIGURE 6 3D morphs showing the facial shape variation that corresponds to each size measure and age (a). The morphs are scaled to 2
SD departures from the mean in each direction. (b) shows heatmaps that correspond to these morphs
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of four measures of size as well as age in a large sample of 3D facial

images for Tanzanian and North American children of European

descent. We report that facial shape is significantly related to height,

weight, face size (centroid size), head circumference and age. The pat-

terns of shape variation associated with these variables are broadly

similar with the shape correlates of head circumference differing the

most. Age and height are associated with the most similar shape varia-

tion (Figure 6). However, the patterns of shape variation also vary sig-

nificantly in both direction and magnitude, showing that different

measures of size are associated with overlapping but distinct patterns

of variation in facial shape. To what extent do age and different size

measures converge on a common axis of allometric variation in the

face? Roughly half of the size-related variation is associated with a

common allometric component while the remaining half is distinctly

associated with particular measures or subsets of measures. Aside from

head circumference, the proportion related to a common underlying

size effect is likely >50%. However, each measure also adds a compo-

nent of variation that is distinct from the others.

Our analysis employs automated 3D landmarking. We used this

approach because of the large volume of data, which makes manual

landmarking prohibitive by a single observer. Manual landmarking pro-

duces measurement error that can be difficult to minimize over a long

period of data collection and when more than one observer are

involved. This can produce effects that are not random and difficult to

disentangle from the analyses (Fruciano et al., 2017). On the other

hand, automated landmarking methods are fairly new and also have

drawbacks. For one, the shape differences between outliers and the

mean can be underestimated, resulting in variance compression (Li

et al., 2017). Also, the landmark template influences landmark positions

and methods for combining landmark analyses using multiple templates

are not yet validated. Neither consideration is likely to influence our

results or our interpretation.

Our results show that variation in the face is highly structured,

with the majority of the shape variation for this fairly high (87) dimen-

sional dataset falling on the first 10 PCs. This is consistent with other

studies of morphological variation, including studies of human facial

FIGURE 7 (a) Regression of the conditional variation for each variable against the first PC of the size measures and age. (b) Visualization
of the correlation matrix for the size measure and age. (c) The shape variances explained by each variable for the regressions of the

conditional variation
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variation (Bugaighis, Mattick, Tiddeman, & Hobson, 2013; Gonzalez,

Perez, & Bernal, 2011; Jonke et al., 2008; Young et al., 2016). The

major axes of covariation involve the facial width, midfacial shape, as

well as orbital shape and orientation. These aspects of facial variation

also have significant heritabilities and genetic correlations (Cole et al.,

2017).

The two populations studied here differ significantly in facial

shape. This is unsurprising, as facial morphology is known to vary geo-

graphically or by ancestry (Buck and Vidarsdottir, 2012; Hopman,

Merks, Suttie, Hennekam, & Hammond, 2014; Klimentidis and Shriver,

2009). This effect is fairly small, however, compared with the variation

within each population. This is consistent with the many studies of

human variation that show much greater magnitudes of variation

within than among populations (Lewontin, 1972; Relethford, 2002).

Importantly, the interactions between age and population or measures

of size and population of origin are much smaller still. This shows that

the age-related shape changes have similar trajectories in our two pop-

ulations. Population differences in facial allometry have been reported

(Freidline, Gunz, & Hublin, 2015; Viðarsd�ottir, O’higgins, & Stringer,

2002). The populations in our study are genetically and geographically

very different and furthermore likely experience very different environ-

mental influences, such as nutrition. Yet, their patterns of facial shape

allometry are very similar.

Our findings also offer clues to the developmental basis for size-

related variation in shape. Integration is the tendency for variation in

developmental processes to produce covariation in morphological traits

(Hallgrimsson et al., 2009). Allometric variation occurs when variation

in a process that affects size produces correlated effects on shape.

These correlated effects often relate to function, as in the case of

scaling relationships (Schmidt-Nielsen, 1984) and may be shaped by

selection (Cheverud, 1996). Here, face size emerges as the largest con-

tributor to allometric variation in the face. Facial size covaries with

height and weight but also varies independently of overall somatic size.

Face size interacts with age as well as with height and weight. The

head, including the face, grows earlier than stature and smaller individ-

uals have relatively larger heads and faces. We show that the size of

the face contributes significantly to face shape in a manner that differs

from the effects of overall growth, suggesting that variation in facial

growth is a source of allometric variation over and above the effects of

overall somatic growth. The developmental basis for variation in head

size or face size is not well understood. It is interesting, however, that

one of the strongest signals in our genome-wide association study of

facial form is for face centroid size and its allometric consequences

(Cole et al., 2016). The similarity of the shape vectors associated with

age and height suggests an underlying commonality in ontogenetic and

static allometry. Mitteroecker et al. (2013) report a similar finding in a

small cross-sectional sample of facial images of male children (N519)

and adults (N525). Investigating the precise relationship between

ontogenetic and static allometry; however, would require a study with

a longitudinal design.

FIGURE 8 A shows the shape vectors that correspond to the regressions of face shape on each size measure and age. Some vectors point
inwards from the surface of the face. (b) shows the distributions of angles among resampled vectors. Since all angles are positive, a mean
angle of 0 is not possible. The Null distribution shows the expected distribution of angles when the angles between the vectors for the
same regression are resamples. The blue line shows the expected mean when the angles are orthogonal (random) while the red line shows 0

(completely parallel)
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Weight also correlates significantly with facial shape when other

size factors are considered. Weight can relate to face shape through

adiposity (Mayer, Windhager, Schaefer, & Mitteroecker, 2017; Windh-

ager, Patocka, & Schaefer, 2013). Further, lean body mass may also be

related to face shape independently of stature. Face shape correlates

with 2D/4D ratio in boys, which is related to testosterone level

(Meindl, Windhager, Wallner, & Schaefer, 2012), and lean body mass is

associated with facial morphology in adult males (Holzleitner and Per-

rett). Variation in lean mass, skeletal robusticity, or adiposity would

translate to covariation between weight and face shape that departs

from the allometric pattern associated with other size measures.

Finally, the distinctiveness of the facial shape effects of head cir-

cumference suggest a fairly independent role for brain size in determin-

ing facial shape. Brain size correlates only weakly with stature and

weight in humans (Heymsfield, Gallagher, Mayer, Beetsch, & Pietrobelli,

2007) and brain size relative to cranial base length and width have

been shown to influence facial shape in birds, mouse models and

humans (Bright, Marugan-Lobon, Cobb, & Rayfield, 2016; Gonzalez

et al., 2013; Hallgrímsson, Lieberman, Liu, Ford-Hutchinson, & Jirik,

2007; Lieberman et al., 2008; Marcucio et al., 2011; Martinez-Abadias

et al., 2012; Marug�an-Lob�on, Watanabe, & Kawabe, 2016; Parsons

et al., 2011). It is not surprising, therefore, that head circumference,

influenced largely by brain size, relates to facial shape differently than

other measures of size.

Size-related variation accounts for <5% of overall variation in face

shape in our study. This surprisingly low value is consistent with other

studies of human facial variation (Gonzalez et al., 2011; Mydlova,

Dupej, Koudelova, & Veleminska, 2015; Veleminska et al., 2012),

although it contrasts with a much higher estimate obtained from an

analysis of 2D sagittal plane projections of 3D landmarks of the whole

skull (Rosas and Bastir, 2002). Studies of craniofacial morphology in

other primates species also show that the allometric correlates of head

size tend to account for a much larger greater proportions of shape

variance (Ito, Nishimura, & Takai, 2011; Lieberman, Carlo, Ponce de

Leon, & Zollikofer, 2007). This may reflect a tendency for covariances

among craniofacial traits to be lower in humans overall as has been

shown in large comparative study of craniofacial integration (Porto

et al., 2009). This may also relate to a tendency for individual features

of human facial shape to appear quite early in ontogeny (Vidarsdottir

and O Higgins, 2003).

We find that allometric variation in the face is complex in that

shape correlates of various measures of size and age converge only

partially on a single underlying variable. This is important for two rea-

sons. First, allometry is a central concept in the study of evolution and

development. Growth changes proportions and shape as well as size,

and variation in size influences most morphological traits. Body size

varies among past and present human populations for both genetic and

environmental reasons, producing correlated changes in facial shape.

To understand size-related variation in human facial shape, it is impor-

tant to know whether allometry is a single axis of integration or

whether the relationship between shape and size is more complex. Sec-

ond, many genetic syndromes appear to influence the shape of the

face (Gorlin, Cohen, & Hennekam, 2001). Many such syndromes also

influence stature, body mass and brain size. For these reasons, it can

be difficult to disentangle facial shape effects that are produced as a

side-effect of the alteration in growth from those that result from

other, more distinctive, perturbations to development.

5 | CONCLUSION

This study addresses the influence of distinct measures of size and age

on facial shape in children. We find that facial shape variation is highly

structured, with most variation falling along a few axes of morphologi-

cal co-variation. Allometric variation represents a relatively small frac-

tion of total variance in facial shape (5%). The allometric component of

variation is complex with age and the various measures of size correlat-

ing with overlapping but distinct patterns of covariation in facial shape.

Klingenberg (2016) distinguishes two concepts of allometry. In the

Gould (1966) and Mosimann (1958) approach, allometry is the covaria-

tion of shape with size, while the Huxley (1932) and Jolicoeur (1963)

approach defines allometry as the covariation among traits that contain

information about size (Klingenberg, 1998). In the former approach, an

a priori assumption is made about what constitutes size while in the lat-

ter size is assumed to be a single latent variable that can be teased out

of covariation patterns. Our finding that allometry is complex has impli-

cations for both approaches, and underscores the need to fully explore

how size-parameters influence morphology in the context of questions

where allometry is either a factor of interest or a factor that must be

quantified and controlled in an analysis.

The structure of phenotypic variation is determined by multiple

developmental processes acting at different times, scales and locations

in development (Hallgrimsson et al., 2009). Here, we have shown that

allometric variation is complex, determined by variation in incompletely

overlapping mechanisms that contribute to growth. This is important

for understanding the genetic and developmental basis for allometry.

Due to the importance of size variation in most populations and the

fact that allometry is generally the largest component of variation for

any morphological trait, determining how size produces variation in

shape is a question of central importance for evolutionary morphology

and for understanding the structure of morphological variation in

humans.
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